9 research outputs found

    4D compressive sensing holographic imaging of small moving objects with multiple illuminations

    Get PDF
    International audienceIn previous work [Opt. Lett. 44, 2827 (2019)], we presented a method based on digital holography and orthogonal matching pursuit, which is able to determine the 3D positions of small objects moving within a larger motionless object. Indeed, if the scattering density is sparse in direct 3D space, compressive sensing algorithms can be used. The method was validated by imaging red blood cell trajectories in the trunk vascular system of a zebrafish (Danio rerio) larva. We give here further details on the reconstruction technique and present a more robust version of the algorithm based on multiple illuminations

    Holographie numérique appliquée à l’imagerie 3D rapide de la circulation sanguine chez le poisson-zèbre

    No full text
    In this manuscript, we present an imaging technique based on digital holography.It enables to image in 3D and in time the blood circulation in a zebrafish larva. The 3D information is acquired in a single frame of the camera, which makes possible to track the movement of red blood cells in the vascular system. We will first discuss the traditional techniques of bio and blood flow imaging, then we will remind the principles of holography. Afterwards, we will describe the imaging method we developed and the experimental results obtained. We will then present the improvements that have been made to the technique. Finally, we will briefly discuss the application of the compressed sensing to the blood flow imaging in zebrafish.Nous présentons dans ce manuscrit une technique d’imagerie basée sur l’holographie numérique. Elle permet d’imager en 3D et dans le temps la circulation sanguine chez une larve de poisson-zèbre. L’information 3D est acquise en une seule image de la caméra, ce qui permet de suivre le mouvement des globules rouges dans le système vasculaire. Nous évoquerons dans un premier temps les techniques de bio-imagerie et d’imagerie du flux sanguin traditionnelles, puis nous rappellerons les principes de l’holographie. Ensuite, nous décrirons la méthode d’imagerie que nous avons développée et les résultats expérimentaux obtenus. Nous compléterons, en présentant les différentes améliorations que nous avons apportées à la technique. Enfin, nous discuterons brièvement de l’application du compressed sensing à l’imagerie de la circulation sanguine dans le poisson-zèbre

    Digital holography applied to fast 3D imaging of blood circulation in zebrafish

    No full text
    Nous présentons dans ce manuscrit une technique d’imagerie basée sur l’holographie numérique. Elle permet d’imager en 3D et dans le temps la circulation sanguine chez une larve de poisson-zèbre. L’information 3D est acquise en une seule image de la caméra, ce qui permet de suivre le mouvement des globules rouges dans le système vasculaire. Nous évoquerons dans un premier temps les techniques de bio-imagerie et d’imagerie du flux sanguin traditionnelles, puis nous rappellerons les principes de l’holographie. Ensuite, nous décrirons la méthode d’imagerie que nous avons développée et les résultats expérimentaux obtenus. Nous compléterons, en présentant les différentes améliorations que nous avons apportées à la technique. Enfin, nous discuterons brièvement de l’application du compressed sensing à l’imagerie de la circulation sanguine dans le poisson-zèbre.In this manuscript, we present an imaging technique based on digital holography.It enables to image in 3D and in time the blood circulation in a zebrafish larva. The 3D information is acquired in a single frame of the camera, which makes possible to track the movement of red blood cells in the vascular system. We will first discuss the traditional techniques of bio and blood flow imaging, then we will remind the principles of holography. Afterwards, we will describe the imaging method we developed and the experimental results obtained. We will then present the improvements that have been made to the technique. Finally, we will briefly discuss the application of the compressed sensing to the blood flow imaging in zebrafish

    Blood flow imaging in zebrafish by laser doppler digital holography.

    No full text
    International audienceMicrovessel blood flow imaging techniques are widely used in biomedical research and clinical diagnostics where many diseases have a vascular etiology or involvement. For testing purposes, zebrafish embryo provides an ideal animal model to achieve high-resolution imaging of superficial and deeply localized vessels. Moreover, the study of the formation of a closed circulatory system in vertebrates is a topic of recent interest in biophysics. However, most of the existing techniques are invasive due to the use of a contrast agent for imaging purposes. Recent developments in Digital Holography and Laser Doppler Holography techniques can be considered to alleviate this issue. Laser Doppler holography and transmission microscopy can be coupled to analyze blood flow in fish embryos by adapting a laser Doppler holographic setup to a standard bio-microscope: the two beams of the holographic interferometer (illumination of the object and reference), whose frequency offset is controlled, were addressed to the microscope by optical fibers. Multimodal acquisition and analysis of the data is made by acting on the frequency offset of the two beams, and on the location of the Fourier space filtered zone. In this work, we show that it is possible to select the signal of moving scatterers, and to image Red Blood Cells (RBCs) and blood vessels. Individual RBCs are imaged, and movies showing the RBC motion are obtained. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc

    4D compressive sensing holographic microscopy imaging of small moving objects

    No full text
    International audienceWe show that compressive sensing (CS) calculations are very ecient to reconstruct in 3D sparse objects whose 2D hologram has been recorded by digital holographic microscopy. The method is well adapted to image small scattering objects moving within a larger motionless object. This situation corresponds to red blood cells (RBCs) circulating in the vascular system of a zebrash (Danio rerio) larva. RBCs positions are imaged in 3D from a single hologram, while the RBCs trajectories, i.e. the perfused blood vessels, are imaged from a sequence of holograms. With respect to previous work (Donnarumma et al., Opt. express, 24, 26887, 2016), we get a gain of ∼ 500 in calculation speed

    Imagerie 4D de la circulation sanguine chez la larve du poisson-zèbre par holographie numérique en illumination multiple

    No full text
    International audienceUne configuration de microscopie holographique qui utilise trois faisceaux d'illumination est proposée. Elle permet d'imager en 3D la positions des globules rouges en mouvement à partir d'un hologramme, ainsi que la structure 3D des vaisseaux sanguins perfusé à partir d'une séquence d'hologrammes

    Visualization 1: 4D holographic microscopy of zebrafish larvae microcirculation

    No full text
    Visualization 1 Originally published in Optics Express on 14 November 2016 (oe-24-23-26887
    corecore